在线观看欧美gv视频网站,忘忧草影视WWW在线播放动漫,国产精品国产精品国产专区,亚洲欧美在线中文理论

      
      

      • <small id="2btsb"><kbd id="2btsb"></kbd></small>
        <td id="2btsb"></td>

        勾股定理怎么算?

        雅秀氏

        勾股定律又稱勾股弦定理、勾股定理,是一個(gè)基本的幾何定理,指在平面上的一個(gè)直角三角形中,兩個(gè)直角邊邊長(zhǎng)的平方加起來(lái)等于斜邊長(zhǎng)的平方。如果設(shè)直角三角形的兩條直角邊長(zhǎng)度分別a是和b,斜邊長(zhǎng)度是c,那么可以用數(shù)學(xué)語(yǔ)言表達(dá):a²+ b² =c² 。

        勾股定律又稱勾股弦定理、勾股定理,是一個(gè)基本的幾何定理,指直角三角形的兩條直角邊長(zhǎng)(古稱勾長(zhǎng)、股長(zhǎng))的平方和等于斜邊長(zhǎng)(古稱弦長(zhǎng))的平方。它是數(shù)學(xué)定理中證明方法最多的定理之一,也是數(shù)形結(jié)合的紐帶之一。中國(guó)古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長(zhǎng)直角邊為股,斜邊為弦,故稱之為勾股定理。

        在平面上的一個(gè)直角三角形中,兩個(gè)直角邊邊長(zhǎng)的平方加起來(lái)等于斜邊長(zhǎng)的平方。如果設(shè)直角三角形的兩條直角邊長(zhǎng)度分別a是和b,斜邊長(zhǎng)度是c,那么可以用數(shù)學(xué)語(yǔ)言表達(dá):a²+ b² =c² 。勾股定理是余弦定理中的一個(gè)特例。

        公元前十一世紀(jì),周朝數(shù)學(xué)家商高就提出“勾三、股四、弦五”?!吨荀滤憬?jīng)》中記錄著商高同周公的一段對(duì)話。商高說(shuō):“…故折矩,勾廣三,股修四,經(jīng)隅五。”意為:當(dāng)直角三角形的兩條直角邊分別為3(勾)和4(股)時(shí),徑隅(弦)則為5。以后人們就簡(jiǎn)單地把這個(gè)事實(shí)說(shuō)成“勾三股四弦五”,根據(jù)該典故稱勾股定理為商高定理。

        公元三世紀(jì),三國(guó)時(shí)代的趙爽對(duì)《周髀算經(jīng)》內(nèi)的勾股定理作出了詳細(xì)注釋,記錄于《九章算術(shù)》中“勾股各自乘,并而開(kāi)方除之,即弦”,趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。后劉徽在劉徽注中亦證明了勾股定理。在中國(guó)清朝末年,數(shù)學(xué)家華蘅芳提出了二十多種對(duì)于勾股定理證法。

        外國(guó)

        遠(yuǎn)在公元前約三千年的古巴比倫人就知道和應(yīng)用勾股定理,他們還知道許多勾股數(shù)組。美國(guó)哥倫比亞大學(xué)圖書(shū)館內(nèi)收藏著一塊編號(hào)為“普林頓322”的古巴比倫泥板,上面就記載了很多勾股數(shù)。古埃及人在建筑宏偉的金字塔和測(cè)量尼羅河泛濫后的土地時(shí),也應(yīng)用過(guò)勾股定理。

        公元前六世紀(jì),希臘數(shù)學(xué)家畢達(dá)哥拉斯證明了勾股定理,因而西方人都習(xí)慣地稱這個(gè)定理為畢達(dá)哥拉斯定理。

        公元前4世紀(jì),希臘數(shù)學(xué)家歐幾里得在《幾何原本》(第Ⅰ卷,命題47)中給出一個(gè)證明。

        1876年4月1日,加菲爾德在《新英格蘭教育日志》上發(fā)表了他對(duì)勾股定理的一個(gè)證法。1940年《畢達(dá)哥拉斯命題》出版,收集了367種不同的證法。